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REAL ANALYSIS

REAL NUMBERS

INTRODUCTION

Real analysis is, roughly speaking, the modern setting for calculus, ‘real’ alluding to the field of real numbers.

This ext on real numbers discusses of sequence that culminates in the concept of convergence, the fundamental concept of analysis. We shall look at Weierstrass-Bolzano theorem, normally a theorem about bonded sequence, is in essence a property of closed intervals and Cauchy’s Criterion is a test for convergence, especially useful in t he theory of infinite series and finally we shall look at a dissection of convergence into two more general limiting operations.
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CHAPTER ONE
BOUNDED SEQUENCES

Bounded Sets
V. S. Shipachev 1998 P. 28
A set x is said to be bounded from above (from below) if there is a number c such that the inequality x ≤ c (x ≥ c) is satisfied for any x Є X. in this case the number C is the upper (lower) bound of the set x.

A set which is bounded both from above and from below is said to be bounded. Thus, for instance, any finite interval 
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 is bounded. The interval 
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 is a set bounded from below but not bounded above, and the entire number line 
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Any set x bounded from above (from below) evidently has infinitely many upper (lower) bounds. Indeed, if the number c is an upper (lower) bound of the set x, then any number c; which is larger (smaller) than the number c, is also an upper (lower) bound of the set x since the validity of the inequality 
[image: image4.wmf]c

x

³

 implies the validity of the inequality 
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Definition of bounded sequence
Sterling, K. Berberian 1994 P. 33-34
A sequence (Xn) of real numbers is said to be bounded if the set 
[image: image6.wmf]{

}

IR

Î

´

n

n

:

is bounded.
A sequence that is not bounded is said to be unbounded.

Remark
A sequence (Xn) in 
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 is bounded if and only if there exist a positive number K such that 
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for all n.
Proof
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If 
[image: image9.wmf]b

Xn

a

£

£

for all n and if 
[image: image10.wmf]b

a

+

=

K

(for example) then 
[image: image11.wmf]K

£

a

and 
[image: image12.wmf]K

£

b

, thus 
[image: image13.wmf]K

£

£

£

£

£

-

£

K

-

b

b

Xn

a

a

by the following.
Theorem 1
For real number a,b,c,x:

1) 
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Example
Every constant sequence 
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Theorem 2
If 
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Proof
If 
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Monotonic Sequence theorem

James Stewart 4th  edition P. 734

Every bounded, monotonic sequence is convergent.

Proof
Suppose 
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But the sequence is increasing so 
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CHAPTER TWO
ULTIMATELY, FREQUENTLY.

Definition
Sterling K. Berberian 1994 P. 35-36
Let (Xn) be a sequence in a set x and let A be a subset of x

(i) we say that 
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ultimately if Xn belongs to A from some index onward that is, there is an index N such that 
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(ii) we say that 
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frequently is for every index N there is an index 
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Example
Let 
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Proof 
Choose an index N such that 
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Example 

For each positive integer n, let Sn be a statement (which may be either true or false).

Let A = {n Є |P : Sn is true}
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We say that Sn is true frequently is 
[image: image67.wmf]A
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 frequently, and that Sn is true ultimately if 
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) and n is frequently divisible by 5 (infact, for n = 5, n = 10, n = 15, etc).
Theorem 3
With notations as above, one and only one of the following conditions holds:

(1)
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Proof

To say that (1) is false means that, whatever index N is proposed, the implication
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is false, so there must exist an index 
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For example is (Xn) is an sequence in 
[image: image76.wmf]R

I

then either Xn < 5 ultimately, or 
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CHAPTER THREE
NULL SEQUENCE

Definition

Sterling K. Berberian 1994 P. 36-38
A sequence (Xn) in 
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 is said to be null if, for every positive real number 
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For example, the sequence 
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Theorem 4

Let (Xn) and (Yn) be null sequences and let 
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Then;

1) (Xn) is bounded

2) (CSn) is null

3) (Xn + Yn) is null

4) if (bn) is a bounded sequence then (bnXn) is null

5) if (Zn) is a sequence such that 
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Proof 
(1) with 
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(2). let 
[image: image89.wmf]0

Î>

. Since (Xn) is null, there is an index N1 such that 
[image: image90.wmf],

2

1

Î

<

Þ

³

n

X

N

n


so if N is the larger of  N1 and N2​ then 
[image: image91.wmf]=Î

Î

+

Î

<

+

£

+

Þ

³

2

2

Yn

Xn

Yn

Xn

N

n


[image: image290.jpg]More Publications



this proves that 
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(3). let k be a positive real number such that 
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(4). let k be a positive real number such that 
[image: image98.wmf]k

bn

£

 for all n. Given any 
[image: image99.wmf],

0

Î>

 choose an index N such that; 
[image: image100.wmf],

<Î

´

£

´

=

´

Þ

³

n

k

n

bn

n

bn

N

n

 thus 
[image: image101.wmf](

)

n

bn

´

 is null.
(2) is a special case of (4)
(5) By assumption, there is an index N1 such that 
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Theorem 5

If 
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Example
Fix 
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 and let Xn = X for all n. The Constant sequence (Xn) is null if and only if x = 0.
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Proof 
The condition “
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CHAPTER FOUR
CONVERGENT SEQUENCE

The Concept of a Convergent Sequence

Definition

V.S. Shipachev 1998 P. 36-37
The number a is the limit of the sequence 
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A sequence which has a limit is said to be convergent. If the sequence 
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 converges and has a number a as its limit, then the symbolic notation is lim 
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A sequence which is not convergent is divergent,

Example

Using the definition of the limit of a sequence, we shall prove that,
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consequently, we can take the integral part of the number 
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Definition

James Stewart 4th edition P. 729
A sequence 
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Limit laws for sequence
James Stewart 4th edition P. 730
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The squeeze theorem for sequence is if 
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Theorem 6
The sequence 
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Definition

A sequence 
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CHAPTER FIVE

SUBSEQUENCES, WEIERSTRASS-BOLZANO THEOREM

Steling K. Berberian, 1994 P. 43-44
Given a sequence
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The general idea is that one is free to discard any terms, as long as infinitely many terms remain.

Remark

Here’s is useful perspective on subsequences.

A sequence 
[image: image204.wmf](

)

n

x

 is a set x can be thought of as a function.

[image: image205.wmf],

:

x

f

®

R

 where 
[image: image206.wmf](

)

n

f

 = [image: image207.wmf](

)

n

x


A sequence of 
[image: image208.wmf](

)

n

x

 is obtained by specifying of strictly increasing function.


[image: image209.wmf]R

:

s

 and taking the composition function fo
[image: image210.wmf]s

 
Thus, writing 
[image: image211.wmf](

)

,

k

n

k

s

=

 we have 
[image: image212.wmf](

)

(

)

(

)

(

)

(

)

nk

k

x

n

f

k

f

k

fo

=

=

=

s

s


Theorem 7 (weierstrass- Bolzano theorem)

Every bounded sequence in 
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 has a convergent subsequence.
Proof
Let 
[image: image214.wmf](

)

n

a

 be a bounded sequence of real numbers. By the preceding theorem, 
[image: image215.wmf](

)

n

a

 has a monotone subsequence 
[image: image216.wmf](

)

nk

a

. Suppose, for example, that 
[image: image217.wmf](

)

nk

a

 is increasing; it is also bounded =, so 
[image: image218.wmf]a

a

nk

­

 for a suitable real number a, and 
[image: image219.wmf]a

a

nk

®

.
The weierstrass-Bolzano theorem can be reformulated as a theorem about closed intervals:

Corollary

In a closed interval 
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CHAPTER SIX
CAUCHY’S CRITERION FOR CONVERGENCE

Theorem 8 (Cauchy’s Criterion)
Steling K. Berberian 1994 P. 48-49
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 (a): Assuming (b), let’s show first that the sequence 
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CHAPTER SEVEN

MONOTONE SEQUENCES

Monotone, monotonic function
Yule Bricks 2006 P. 116.
A function is monotone if it only increases or only decreases, f increases monotonically (is monotonic increasing) if 
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A function f decreases monotonically (is monotonic decreasing) if 
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A function f is strictly monotonically increasing is 
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James Stewart 4th edition P. 733.
A sequence 
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 It is called monotonic if it is either increasing or decreasing.
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The sequence 
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(The right side is smaller because it has a larger denominator).
Definition

V.S. Shipachev 188 P. 42
The sequence 
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All sequence of these kinds are united by a common title of monotone sequences.

Increasing and decreasing sequences are also called strictly monotone sequences.

Here are some examples of monotone sequences. 


(1) The sequence 
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(2) The sequence 
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 is non increasing and bounded.

(3) The sequence 1,2,3……,n,…….. is increasing and bounded.

(4) The sequence 1,1,2,2,3,3,…..,n,n,….  Is non decreasing and unbounded.

(5) The sequence 
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Or ‘a sequence in x’, whose nth term is xn
Various notations are used to indicated sequences, for example 
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Definition

A sequence 
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A sequence that is either increasing or decreasing is said to be monotone; more precisely, one speaks of sequences that are ‘monotone increasing ‘or ‘ monotone decreasing’.


RECOMMENDATON
The genda of this text can be recommended as a foundation of calculus including the fundamental theorem and along was to develop those skills and attitudes that enable us to continue learning mathematics on out own.

Some part of real analysis is an attempt to bring some significant pat of the theory of lebesgue integral a powerful generalization calculus.
Real analysis can also be recommended for the application of applied Abstract algebra and introduction to optimal control theory.


CONCLUSION
This text gives the fundamentals of real functions and I tried to present the material as completely, strictly and simple as possible. The aim was no to convey certain quantity of knowledge in mathematics but also to arouse an interest in any reader of this text.
Real functions can be used by mathematicians for theoretical material, and therefore for practical purposes

Also it can be applied for mathematical prediction possible for complicated phenomena and mechanisms.
Real functions can be applied to solve specific theoretical and practical problems to stimulate and elaborate of newer abstract methods and branches of mathematics.
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